オペレヴィ・ヴィクセ

ユークリッドの『原論』を少しずつ読んでいくブログです。タイトルは「Q.E.D.」の元になったギリシャ語の「όπερ έδει δείξαι.」。

第1巻-命題-命題1.36

第2巻命題8 二分された線分全体と一方との矩形の四倍

もし線分が任意に二分されるならば、全体と一つの部分とに囲まれた矩形の四倍と残りの部分の上の正方形との和は、全体の線分と先の部分とを一直線とした線分上の正方形に等しい。

第2巻命題6 二等分および延長された線分上の矩形

もし線分が二等分され、任意の線分がそれと一直線を成して加えられるならば、加えられた線分を含んだ全体と加えられた線分とに囲まれた矩形ともとの線分の半分の上の正方形との和は、もとの線分の半分と加えられた線分とを合わせた線分上の正方形に等しい。

第2巻命題5 二等分および二分された線分上の矩形

もし線分が相等および不等な部分に分けられるならば、不等な部分に囲まれた矩形と二つの区分点の間の線分上の正方形との和は、もとの線分の半分の上の正方形に等しい。

第1巻命題38 三角形の等積変形[等底編]

等しい底辺の上にあり、かつ同じ平行線の間にある三角形は互いに等しい。

第1巻命題36 平行四辺形の等積変形[等底編]

等しい底辺の上にあり、かつ同じ平行線の間にある平行四辺形は互いに等しい。