オペレヴィ・ヴィクセ

ユークリッドの『原論』を少しずつ読んでいくブログです。タイトルは「Q.E.D.」の元になったギリシャ語の「όπερ έδει δείξαι.」。

第1巻-命題-命題1.32

第2巻命題10 二等分および延長された線分上の正方形

もし線分が二等分され、任意の線分がそれと一直線を成して加えられるならば、加えられた線分を含んだ全体の上の正方形と加えられた線分上の正方形との和は、もとの線分の半分の上の正方形と、もとの線分の半分と加えられた線分とを一直線とした上の正方形と…

第2巻命題9 二等分および二分された線分上の正方形

もし線分が相等および不等な部分に分けられるならば、不等な部分の上の正方形の和は、もとの線分の半分の上の正方形と二つの区分点の間の線分上の正方形との和の二倍である。

第1巻命題32 三角形の内角の和は二直角

すべての三角形において、一辺が延長されるとき、外角は二つの内対角の和に等しく、三角形の三つの内角の和は二直角に等しい。