オペレヴィ・ヴィクセ

ユークリッドの『原論』を少しずつ読んでいくブログです。タイトルは「Q.E.D.」の元になったギリシャ語の「όπερ έδει δείξαι.」。

第1巻-命題-命題1.23

第3巻命題8 円の外部から円周へ引かれた線分

もし円の外部に一点がとられ、その点から円周にいくつかの線分が引かれ、そのうち一つは中心を通り他は任意であるとすれば、凹形の弧に引かれた線分のうち中心を通るものは最も大きく、他の線分のうち中心を通るものに近いものは遠いものより常に大きい、他…

第3巻命題7 直径上の中心でない点から引かれた線分

もし円の直径上に円の中心でない一点が取られ、その点から円周に線分が引かれるならば、中心がその上にあるものが最も大きく、この直径の残りが最も小さく、他の線分のうち中心を通る線分に近いものが遠いものよりも常に大きく、そしてその点から円周へただ…

第1巻命題42 三角形に等しい平行四辺形の作図[角を与えられた場合]

与えられた直線角の中に与えられた三角形に等しい平行四辺形を作ること。

第1巻命題31 平行線の作図

与えられた点を通り、与えられた直線に平行線を引くこと。

第1巻命題24 二つの三角形の不等な角

もし二つの三角形において、二辺が二辺にそれぞれ等しく、等しい線分によって挟まれる角の一方が他方より大きいならば、底辺も底辺より大きいであろう。

第1巻命題23 角の移動

与えられた直線上にその上の点において与えられた直線角に等しい直線角を作ること。