オペレヴィ・ヴィクセ

ユークリッドの『原論』を少しずつ読んでいくブログです。タイトルは「Q.E.D.」の元になったギリシャ語の「όπερ έδει δείξαι.」。

第1巻-命題-命題1.08

第3巻命題9 等しい線分を引ける円の内部の点

もし円の内部に一点がとられ、その点から円に二つより多い等しい線分が引かれるならば、とられた点は円の中心である。

第3巻命題1 円の中心の作図

与えられた円の中心を見出すこと。

第1巻命題48 ピタゴラスの定理の逆

もし三角形において、一辺の上の正方形が三角形の残りの二辺の上の正方形の和に等しければ、三角形の残りの二辺によって挟まれる角は直角である。

第1巻命題23 角の移動

与えられた直線上にその上の点において与えられた直線角に等しい直線角を作ること。

第1巻命題12 直線外の点を通る垂線

与えられた無限直線にその上にない与えられた点から垂線を下ろすこと。

第1巻命題11 直線上の点を通る垂線

与えられた直線にその上の与えられた点から直角に直線を引くこと。

第1巻命題9 角の二等分

与えられた直線角を二等分すること。 与えられた直線角を角ΒΑΓとせよ。このときそれを二等分しなければならぬ。

第1巻命題8 三角形の合同条件(三辺相等)[本編]

もし二つの三角形において二辺が二辺にそれぞれ等しく、底辺も底辺に等しければ、等しい辺に挟まれた角もまた等しいであろう。