オペレヴィ・ヴィクセ

ユークリッドの『原論』を少しずつ読んでいくブログです。タイトルは「Q.E.D.」の元になったギリシャ語の「όπερ έδει δείξαι.」。

第1巻-命題-命題1.03

第2巻命題14 直線図形に等しい正方形の作図

与えられた直線図形に等しい正方形を作ること。

第2巻命題11 二分された線分上の等しい正方形と矩形の作図

与えられた線分を二分し、全体と一つの部分とに囲まれた矩形を、残りの部分の上の正方形に等しくすること。

第2巻命題10 二等分および延長された線分上の正方形

もし線分が二等分され、任意の線分がそれと一直線を成して加えられるならば、加えられた線分を含んだ全体の上の正方形と加えられた線分上の正方形との和は、もとの線分の半分の上の正方形と、もとの線分の半分と加えられた線分とを一直線とした上の正方形と…

第2巻命題9 二等分および二分された線分上の正方形

もし線分が相等および不等な部分に分けられるならば、不等な部分の上の正方形の和は、もとの線分の半分の上の正方形と二つの区分点の間の線分上の正方形との和の二倍である。

第2巻命題8 二分された線分全体と一方との矩形の四倍

もし線分が任意に二分されるならば、全体と一つの部分とに囲まれた矩形の四倍と残りの部分の上の正方形との和は、全体の線分と先の部分とを一直線とした線分上の正方形に等しい。

第2巻命題1 線分と分けられた線分とに囲まれた矩形

もし二線分があり、その一方が任意個の部分に分けられるならば、二線分に囲まれた矩形は、分けられていない線分と分けられた部分の各々とに囲まれた矩形の和に等しい。

第1巻命題48 ピタゴラスの定理の逆

もし三角形において、一辺の上の正方形が三角形の残りの二辺の上の正方形の和に等しければ、三角形の残りの二辺によって挟まれる角は直角である。

第1巻命題46 正方形の作図

与えられた線分上に正方形を描くこと。

第1巻命題26 三角形の合同条件(一辺両端角相等)

もし二つの三角形において、二角が二角にそれぞれ等しく、一辺が一辺に、すなわち等しい二角に挟まれる辺かまたは等しい角の一つに対する辺が等しければ、残りの二辺も残りの二辺に等しく、残りの角も残りの角に等しいであろう。

第1巻命題24 二つの三角形の不等な角

もし二つの三角形において、二辺が二辺にそれぞれ等しく、等しい線分によって挟まれる角の一方が他方より大きいならば、底辺も底辺より大きいであろう。

第1巻命題22 三辺を与えられた三角形

与えられた三線分に等しい三線分から三角形を作ること。ただしどの二線分をとっても、その和は残りの線分より大きくなければならない。

第1巻命題20 三角形の二辺の和

すべての三角形において、どの二辺をとってもその和は残りの一辺より大きい。

第1巻命題18 三角形の大きい辺は大きい角に対する

すべての三角形において、大きい辺は大きい角に対する。

第1巻命題16 三角形の外角は内対角より大きい

すべての三角形において、辺のひとつが延長されるとき、外角は内対角のいずれよりも大きい。

第1巻命題11 直線上の点を通る垂線

与えられた直線にその上の与えられた点から直角に直線を引くこと。

第1巻命題9 角の二等分

与えられた直線角を二等分すること。 与えられた直線角を角ΒΑΓとせよ。このときそれを二等分しなければならぬ。

第1巻命題6 二角の等しい三角形は二等辺三角形

もし三角形の二角が互いに等しければ、等しい角に対する辺も互いに等しいであろう。

第1巻命題5 二等辺三角形の底角は等しい

二等辺三角形の底辺の上にある角は互いに等しく、等しい辺が延長されるとき、底辺の下の角は互いに等しいであろう。

第1巻命題3 線分の切り取り

二つの不等な線分が与えられたとき、大きいものから小さいものに等しい線分を切り取ること。