オペレヴィ・ヴィクセ

ユークリッドの『原論』を少しずつ読んでいくブログです。タイトルは「Q.E.D.」の元になったギリシャ語の「όπερ έδει δείξαι.」。

公理8

第3巻命題1 円の中心の作図

与えられた円の中心を見出すこと。

第2巻命題10 二等分および延長された線分上の正方形

もし線分が二等分され、任意の線分がそれと一直線を成して加えられるならば、加えられた線分を含んだ全体の上の正方形と加えられた線分上の正方形との和は、もとの線分の半分の上の正方形と、もとの線分の半分と加えられた線分とを一直線とした上の正方形と…

第1巻命題44 三角形に等しい平行四辺形の作図[角と線分を与えられた場合]

与えられた線分上に与えられた三角形に等しい平行四辺形を、与えられた直線角に等しい角の中に作ること。

第1巻命題40 等底上の等しい三角形

等しい底辺の上にあり、かつ同じ側にある等しい三角形は同じ平行線の間にある。

第1巻命題39 同底上の等しい三角形

同じ底辺の上にあり、かつ同じ側にある等しい三角形は同じ平行線の間にある。

第1巻命題26 三角形の合同条件(一辺両端角相等)

もし二つの三角形において、二角が二角にそれぞれ等しく、一辺が一辺に、すなわち等しい二角に挟まれる辺かまたは等しい角の一つに対する辺が等しければ、残りの二辺も残りの二辺に等しく、残りの角も残りの角に等しいであろう。

第1巻命題24 二つの三角形の不等な角

もし二つの三角形において、二辺が二辺にそれぞれ等しく、等しい線分によって挟まれる角の一方が他方より大きいならば、底辺も底辺より大きいであろう。

第1巻命題6 二角の等しい三角形は二等辺三角形

もし三角形の二角が互いに等しければ、等しい角に対する辺も互いに等しいであろう。

第1巻 公準と公理

公準(要請) 次のことが要請されているとせよ。 任意の点から任意の点へ直線をひくこと。 および有限直線を連続して一直線に延長すること。 および任意の点と距離(半径)をもって円を描くこと。 およびすべての直角は互いに等しいこと。 および一直線が二…