オペレヴィ・ヴィクセ

ユークリッドの『原論』を少しずつ読んでいくブログです。タイトルは「Q.E.D.」の元になったギリシャ語の「όπερ έδει δείξαι.」。

公理5

第1巻命題47 ピタゴラスの定理

直角三角形において、直角の対辺の上の正方形は直角を挟む二辺の上の正方形の和に等しい。

第1巻命題42 三角形に等しい平行四辺形の作図[角を与えられた場合]

与えられた直線角の中に与えられた三角形に等しい平行四辺形を作ること。

第1巻命題28 同位角が等しければ平行

もし一直線が二直線に交わって成す一つの外角が同じ側の内対角に等しいか、または同側内角の和が二直角に等しければ、この二直線は互いに平行であろう。

第1巻命題15 対頂角は等しい

もし二直線が互いに交わるならば、対頂角を互いに等しくする。

第1巻命題14 二直角は直線

もし任意の直線に対して、その上の点において同じ側にない二直線が接角の和を二直角に等しくするならば、この二直線は互いに一直線を成すであろう。

第1巻 公準と公理

公準(要請) 次のことが要請されているとせよ。 任意の点から任意の点へ直線をひくこと。 および有限直線を連続して一直線に延長すること。 および任意の点と距離(半径)をもって円を描くこと。 およびすべての直角は互いに等しいこと。 および一直線が二…