オペレヴィ・ヴィクセ

ユークリッドの『原論』を少しずつ読んでいくブログです。タイトルは「Q.E.D.」の元になったギリシャ語の「όπερ έδει δείξαι.」。

公理1

第3巻命題8 円の外部から円周へ引かれた線分

もし円の外部に一点がとられ、その点から円周にいくつかの線分が引かれ、そのうち一つは中心を通り他は任意であるとすれば、凹形の弧に引かれた線分のうち中心を通るものは最も大きく、他の線分のうち中心を通るものに近いものは遠いものより常に大きい、他…

第3巻命題7 直径上の中心でない点から引かれた線分

もし円の直径上に円の中心でない一点が取られ、その点から円周に線分が引かれるならば、中心がその上にあるものが最も大きく、この直径の残りが最も小さく、他の線分のうち中心を通る線分に近いものが遠いものよりも常に大きく、そしてその点から円周へただ…

第3巻命題6 接する二円の中心

もし二つの円が互いに接するならば、それらは同じ中心を持たないであろう。

第3巻命題5 交わる二円の中心

もし二つの円が互いに交わるならば、それらは同じ中心を持たないであろう。

第2巻命題14 直線図形に等しい正方形の作図

与えられた直線図形に等しい正方形を作ること。

第2巻命題13 余弦定理[鋭角編]

鋭角三角形において、鋭角の対辺の上の正方形は、鋭角を挟む二辺の上の正方形の和より、鋭角を挟む辺の一つと、この辺へと垂線が下ろされ、この鋭角への垂線によって内部に切り取られた線分とに囲まれた矩形の二倍だけ小さい。

第2巻命題10 二等分および延長された線分上の正方形

もし線分が二等分され、任意の線分がそれと一直線を成して加えられるならば、加えられた線分を含んだ全体の上の正方形と加えられた線分上の正方形との和は、もとの線分の半分の上の正方形と、もとの線分の半分と加えられた線分とを一直線とした上の正方形と…

第2巻命題9 二等分および二分された線分上の正方形

もし線分が相等および不等な部分に分けられるならば、不等な部分の上の正方形の和は、もとの線分の半分の上の正方形と二つの区分点の間の線分上の正方形との和の二倍である。

第2巻命題8 二分された線分全体と一方との矩形の四倍

もし線分が任意に二分されるならば、全体と一つの部分とに囲まれた矩形の四倍と残りの部分の上の正方形との和は、全体の線分と先の部分とを一直線とした線分上の正方形に等しい。

第2巻命題7 二分された線分全体と一方の上の正方形

もし線分が任意に二分されるならば、全体の上の正方形と一つの部分の上の正方形との和は、全体の線分とこの部分とに囲まれた矩形の二倍と残りの部分の上の正方形との和に等しい。

第2巻命題6 二等分および延長された線分上の矩形

もし線分が二等分され、任意の線分がそれと一直線を成して加えられるならば、加えられた線分を含んだ全体と加えられた線分とに囲まれた矩形ともとの線分の半分の上の正方形との和は、もとの線分の半分と加えられた線分とを合わせた線分上の正方形に等しい。

第2巻命題5 二等分および二分された線分上の矩形

もし線分が相等および不等な部分に分けられるならば、不等な部分に囲まれた矩形と二つの区分点の間の線分上の正方形との和は、もとの線分の半分の上の正方形に等しい。

第2巻命題4 二分された線分全体の上の正方形

もし線分が任意に二分されるならば、全体の上の正方形は、二つの部分の上の正方形と、二つの部分によって囲まれた矩形の二倍との和に等しい。

第1巻命題48 ピタゴラスの定理の逆

もし三角形において、一辺の上の正方形が三角形の残りの二辺の上の正方形の和に等しければ、三角形の残りの二辺によって挟まれる角は直角である。

第1巻命題46 正方形の作図

与えられた線分上に正方形を描くこと。

第1巻命題45 直線図形に等しい平行四辺形の作図(領域付置)

与えられた直線角の中に、与えられた直線図形に等しい平行四辺形を作ること。

第1巻命題44 三角形に等しい平行四辺形の作図[角と線分を与えられた場合]

与えられた線分上に与えられた三角形に等しい平行四辺形を、与えられた直線角に等しい角の中に作ること。

第1巻命題40 等底上の等しい三角形

等しい底辺の上にあり、かつ同じ側にある等しい三角形は同じ平行線の間にある。

第1巻命題39 同底上の等しい三角形

同じ底辺の上にあり、かつ同じ側にある等しい三角形は同じ平行線の間にある。

第1巻命題36 平行四辺形の等積変形[等底編]

等しい底辺の上にあり、かつ同じ平行線の間にある平行四辺形は互いに等しい。

第1巻命題35 平行四辺形の等積変形[同底編]

同じ底辺の上にあり、かつ同じ平行線の間にある平行四辺形は互いに等しい。

第1巻命題32 三角形の内角の和は二直角

すべての三角形において、一辺が延長されるとき、外角は二つの内対角の和に等しく、三角形の三つの内角の和は二直角に等しい。

第1巻命題30 三直線の平行

同一の直線に平行な二直線はまた互いに平行である。

第1巻命題29 平行線の錯角、同位角は等しい

一つの直線が二つの平行線に交わって成す錯角は互いに等しく、外角は内対角に等しく、同側内角の和は二直角に等しい。

第1巻命題28 同位角が等しければ平行

もし一直線が二直線に交わって成す一つの外角が同じ側の内対角に等しいか、または同側内角の和が二直角に等しければ、この二直線は互いに平行であろう。

第1巻命題26 三角形の合同条件(一辺両端角相等)

もし二つの三角形において、二角が二角にそれぞれ等しく、一辺が一辺に、すなわち等しい二角に挟まれる辺かまたは等しい角の一つに対する辺が等しければ、残りの二辺も残りの二辺に等しく、残りの角も残りの角に等しいであろう。

第1巻命題22 三辺を与えられた三角形

与えられた三線分に等しい三線分から三角形を作ること。ただしどの二線分をとっても、その和は残りの線分より大きくなければならない。

第1巻命題15 対頂角は等しい

もし二直線が互いに交わるならば、対頂角を互いに等しくする。

第1巻命題14 二直角は直線

もし任意の直線に対して、その上の点において同じ側にない二直線が接角の和を二直角に等しくするならば、この二直線は互いに一直線を成すであろう。

第1巻命題13 直線は二直角

もし直線が直線の上に立てられて二つの角を作るならば、二つの直角か、またはその和が二直角に等しい角を作るであろう。