オペレヴィ・ヴィクセ

ユークリッドの『原論』を少しずつ読んでいくブログです。タイトルは「Q.E.D.」の元になったギリシャ語の「όπερ έδει δείξαι.」。

公準5

第2巻命題10 二等分および延長された線分上の正方形

もし線分が二等分され、任意の線分がそれと一直線を成して加えられるならば、加えられた線分を含んだ全体の上の正方形と加えられた線分上の正方形との和は、もとの線分の半分の上の正方形と、もとの線分の半分と加えられた線分とを一直線とした上の正方形と…

第1巻命題44 三角形に等しい平行四辺形の作図[角と線分を与えられた場合]

与えられた線分上に与えられた三角形に等しい平行四辺形を、与えられた直線角に等しい角の中に作ること。

第1巻命題29 平行線の錯角、同位角は等しい

一つの直線が二つの平行線に交わって成す錯角は互いに等しく、外角は内対角に等しく、同側内角の和は二直角に等しい。

第1巻 公準と公理

公準(要請) 次のことが要請されているとせよ。 任意の点から任意の点へ直線をひくこと。 および有限直線を連続して一直線に延長すること。 および任意の点と距離(半径)をもって円を描くこと。 およびすべての直角は互いに等しいこと。 および一直線が二…